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Two different growing mechanisms, given by the Eden model (EM) and the unstable Eden model (UEM),
are used to numerically explore the properties of the interface generated by a competitive dynamic process in
which particles are aggregated according to the rules of the EM with probability (1—p) and following the UEM
with probability p. Based on extensive numerical simulations, it is shown that the interface width exhibits a
growing regime that at time 7,, crosses over to a saturation state such that the width (W,,,) remains stationary.
It is shown that W, and 7, depend on both the lattice size L and the probability p. This behavior can be
rationalized by proposing new scaling relationships, which are tested numerically. Furthermore, the relevant
exponents are determined showing that the instabilities of the UEM dominate the dynamics of the growing

process.
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I. INTRODUCTION

The study of the morphology, structure, and other physi-
cal and chemical properties of growing interfaces has re-
cently become a very active field of research [1-4]. This
interest is due to the fact that evolving interfaces appear in a
great variety of physical, chemical, and biological systems.
For example, it is well known that mechanical problems con-
cerning wear, friction, and adhesion show a crucial depen-
dence on the smoothness of the surfaces that come into con-
tact. Also, the surface roughness modifies the electrical,
magnetic, and optical properties of thin films. The develop-
ment of better controlled surface growth techniques is an
important line of research with technological applications,
and these techniques generally show the existence of growth
regimes with common spatiotemporal features, such as scale
invariance [1]. Also, natural processes such as the propaga-
tion of forest fires and the growth of bacterial colonies show
interfacial scale invariant behavior [1]. Scale invariance is
revealed by scaling exponents and functions that have to be
measured in order to classify the growth processes into uni-
versality classes.

Models of growing interfaces may be defined and studied
by means of both continuous equations and discrete lattices.
Continuous equations focus on macroscopic aspects of sur-
face roughness that are expected to be universal. The main
idea behind this approach is to follow the evolution of
coarse-grained variables such as the interface location. The
most popular approaches are the Edwards-Wilkinson (EW)
[5] and the Kardar-Parisi-Zhang (KPZ) equations [6]. On the
other hand, discrete models are defined by a set of rules that
provide a detailed microscopic description of the evolution
of the surface. Some very well known discrete models are
random deposition (RD), random deposition with surface re-
laxation (RDSR), and ballistic deposition (BD) [1-4]. In
these models the interface is described by a discrete set h(i, )
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that represents the height of site i at time ¢. The interface has
L4 sites, where L is the linear size and d is the dimensionality
of the substrate. The interface of the aggregate is character-
ized by the scaling of the interface width

Ld
\/ VLYY, [h(i,r) = (h(e) P, (1)

i=1

W(L,?)

where (h()) is the average height of the surface at time ¢ and
is defined as

B0 = =3 i), @

The Family-Vicsek phenomenological scaling approach
[7] provides a very successful way to describe the dynamic
evolution of growing interfaces. Accordingly, it may be ex-
pected that W(L,7) would show the spatiotemporal scaling
behavior given by [7]: W,,,(L) = L% for t>t. and W(z) «t# for
t<<t., where t.>L? is the crossover time between these two
regimes. The scaling exponents «, B, and z=«a/ are called
roughness, growth, and dynamic exponents, respectively.
The above concepts can be summarized by means of the
following scaling ansatz [7]:

W(t) « L“F(¢/L%), (3)

where F(x)=const for x>1 and F(x)xx? for x—0.

It should be noticed that most studies, reported up to now
and performed using both continuous equations and/or dis-
crete models, usually involve a single kind of particle. In
contrast, less attention has been drawn to the study of the
dynamics of competitive processes, even when these pro-
cesses are significant to the growth of real materials in at
least two different situations: (a) in growing processes in-
volving two or more types of particles and (b) considering
the deposition of a single kind of particle that may undergo
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either a deposition-evaporation process or is subjected to dif-
ferent growing mechanisms. One example of case (a) arises
during the deposition of alloys or single-component systems
contaminated with impurities; see Refs. [8—13] and refer-
ences therein. In this case, there may be different interactions
among different kinds of particles causing the growing
mechanisms to change [8-13]. Based on these ideas, Cer-
deira and co-workers [8—11] have studied models for binary
systems involving competitive randomlike and ballisticlike
deposition.

Also, deposition of a single kind of particle in a competi-
tive process arises upon the growth of polycrystalline films
[14]. In this case, particles deposited in the central area of
small crystals undergo restricted diffusion, while particles
deposited close to the intercrystalline gaps may experience
intercrystalline  diffusion and consequently different
adsorption-diffusion mechanisms have to be considered [14].
Also, Shapir et al. [15] have reported experimental results
for the surface roughness of interfaces obtained during cyclic
electrodeposition and dissolution of silver. They found that
the roughness exhibits a power-law dependence with the
number of cycles, a result that is consistent with a scaling
description developed by using continuous equations and
renormalization group techniques [15].

In this context, two of us have previously studied two
competitive models [16,17]. In the first discrete growth
model—namely, the RDSR-RD model—particles of a single
kind have been aggregated according to the rules of RDSR
with probability p and according to the rules of RD with
probability (1-p) [16]. In the second discrete growth
model—namely, the BD-RD model—particles have been ag-
gregated according to the rules of BD with probability p and
according to the rules of RD with probability (1-p) [17].
Our main results can be summarized as follows: in both
models, three different regimes and the corresponding cross-
overs can easily be observed. For short times—say,
t<t,,—the RD process dominates and the random growth of
the interface is observed. At this stage, correlations have not
been developed yet and W(z) « tPrp (¢ <t,,) holds. During an
intermediate-time regime—say, f,; <t <t,,—correlations de-
velop since the RDSR (BD) process now dominates leading
to W(r) o tPrROsR (W(r) o< tPBD). At a later stage, for t>f,,, cor-
relations can no longer grow due to the geometrical con-
straint of the lattice size and saturation is observed. The satu-
ration width W, (L,p) and the characteristic crossover time
t,, behave as [16,17]

Wou(L.p) < L%p™°  (p>0) 4)
and
to(L,p) < LXp™ (p>0), (5)

where 6 and y are exponents and X=RDSR, BD depending
on the model. For 7, <t<f,, one has

W(t,p) = tPxp™7, (6)

where v is also a characteristic exponent.
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The exponents 7y, &, and y are not independent. Using a
phenomenological dynamic scaling ansatz it has been shown
that the following relationship between exponents holds
[16,17]:

yBx— 96+ y=0. (7)

For the RDSR-RD model in d=(1+1) dimensions, the
conjectured exact values are y=2, §=1, and y= % Also, for
the BD-RD model in the same dimension one has y=1, 6
= % and y= %

It is worth mentioning that from these results it follows
that the saturation value W, depends sensitively on p: satu-
ration takes place at longer times for smaller values of p,
while W, decreases as p increases. This is because in both
competitive models the lack of correlations among particles
deposited according to RD produces a delay in the develop-
ment of correlations along the direction parallel to the inter-
face.

Let us stress that all these previous studies involve the
competition between growing mechanisms leading to the de-
velopment of stable interfaces with S<<1/2. So, in order to
further contribute to the understanding of competitive pro-
cesses, the aim of the present work is to study the properties
of the interface generated by a competitive dynamic process
involving both stable and unstable growing mechanisms. For
this purpose the Eden model (EM) [18,19] and the unstable
Eden model (UEM) [20] have been used. According to Ref.
[19] three different versions of the EM can be implemented.
We have used the version A in which the new particle is
added equiprobably on any unoccupied site of the perimeter
(see Sec. II). Since unstable interfaces are not described by
means of the standard Family-Vicsek ansatz [Eq. (3)], the
present work is also aimed at contributing to the develop-
ment of more general dynamic scaling approaches. The pa-
per is organized as follows: the competitive model is intro-
duced in Sec. II. In Sec. III our numerical results are
presented and discussed and, finally, our conclusions are
stated in Sec. I'V.

II. DESCRIPTION OF THE MODEL

The Eden Model was earlier introduced by Eden as a
growth model of tumor cells [18]. In this paper, the EM is
defined in the square lattice of width L and length M in
(1+1) dimensions. The sites of the lattice are labeled by
indexes (i,/) such that 1 <{<L and 1 <j<M. The growing
process starts from a row of occupied sites at j=1 (Vi) while
the remaining sites of the lattice are left vacant. Eden clusters
grow by adding new particles to perimeter sites—i.e., those
empty sites that are nearest neighbors of already occupied
sites. Specifically, the EM assumes that all perimeter (or
growing) sites have the same probability of becoming occu-
pied. This version of the EM corresponds to that called ver-
sion A in Ref. [19] and exhibits strong finite-size effects [21].
Because of these effects, the determination of the 8 exponent
becomes difficult and the use of very large lattice sizes is
necessary. In the present work we reach the asymptotic limit
for the largest lattice size that we used and we show that our
conclusions are valid in this limit.
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It is well known that Eden clusters are compact objects
with a self-affine interface characterized, in 1+ 1 dimensions,
by exponents Bgy=1/3 and agy=1/2 and, consequently,
Zem=@em/ Bem=3/2 [1]. The EM belongs to the KPZ uni-
versality class [1].

In the unstable Eden model [20] the growing sites have a
probability P(j—(h)) of becoming occupied, such that

P(j=(m) = Clj = (m)*, (8)

where A is an exponent that can be tuned as an external
parameter and (/) is the average height of the interface at
time 7, which is given by Eq. (2). It should be noticed that
after each deposition event the growing probability of all
perimeter sites has to be evaluated, such that the normaliza-
tion constant becomes C=1/2 ;;,,.P(j—(h)). It is also clear
that for A=0 the UEM gives the classical EM. The UEM is
inspired by the experimental observation of the growth of
unstable interfaces upon both chemical vapor deposition of
SiO, [22] and electrodeposition of Cu [23]. In fact, these
experiments show that due to the preferential deposition of
atoms in some regions of the sample, one observes the de-
velopment of protrusions surrounded by deep valleys and the
growth of the interface becomes unstable during a transient
period. The UEM was numerically studied for several values
of A [20], and it was established that for A>0 the critical
exponents become independent of A with Bygy=2/3 and
aypm=1. These values were numerically determined by
simulating the UEM in lattices of L=<1536. Assuming the
validity of the Family-Vicsek scaling relation, the value
Zuem= ®yem/ Bupm=3/2 should be expected. Our prelimi-
nary estimation was zygy=1.35+0.20, while for the purpose
of the present work a more accurate value has been deter-
mined, performing exhaustive simulations so that zygm
=1.05+0.05. This result is not surprising since unstable
models with 1/2<f=<1 depart from the standard Family-
Vicsek scaling approach. It is also worth mentioning that
models with a> 1 exhibit superroughening since the density
of sites of the interface diverges in the thermodynamic limit
[24,25]. So, the UEM with aygy =1 may be marginally su-
perrough. Also, as was shown in Ref. [20], the UEM lacks
self-affinity.

In the present work, a discrete growth model—namely,
the EM-UEM model—where particles are aggregated ac-
cording to the rules of the EM with probability (1—p) and
according to the rules of the UEM with probability (p), is
studied by means of Monte Carlo simulations. These simu-
lations are performed in the square lattice of width L and
length M, in 1+1 dimensions, assuming periodic boundary
conditions along the L direction. One Monte Carlo time step
(MCS) involves the deposition of L particles.

III. RESULTS AND DISCUSSION

Figure 1(a) shows plots of W versus 7 obtained for the
EM-UEM model using different values of p and taking L
=512. It is found that the saturation of the interface width
(W) depends sensitively on p, with values ranging between
both models—i.e., the EM with p=0 and the UEM with p
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FIG. 1. Log-log plots of the interface width (W) versus time (7)
for the EM-UEM model. (a) Data obtained taking L=512 and dif-
ferent values of p, which are, from bottom to top, p=0, 0.02, 0.04,
0.08, 0.16, 0.32, 0.64, and 1.00. (b) Data obtained taking L=4096
and different values of p, which are, from bottom to top, p=0, 0.01,
0.32, and 1.00. Also, for the UEM (p=1) and EM (p=0) dashed
lines with slopes Bypm=2/3 and Bgy=1/3 have been drawn for the
sake of comparison.

=1. As follows from Fig. 1(a), for the selected lattice size,
the growing regime of the EM does not reach the asymptotic
slope with Bgy=1/3, but a smaller slope is observed. This is,
of course, a typical finite-size effect, and the use of noise-
reduction techniques (or a large lattice size) is necessary in
order to obtain a reliable estimation of Bgy [1]. For p>0 one
observes the departure from the growing regime of the EM.
This regime becomes clearly dominated by the UEM for
0.08<p=<0.64.

Because the scaling regimes for the EM and UEM were
not reached in these simulations, one wonders if similar con-
clusions can be drawn even in the asymptotic limit. Figure
1(b) shows plots of W versus ¢ for different values of p for
L=4096. The asymptotic regime for the EM and UEM is
reached for p=0 and p=1, respectively (we have measured
Bem=0.329+0.004 and Bygy=0.666+0.001). Though due to
the so large lattice size used the saturation regime could not
be reached and therefore W, (and t,,) cannot be determined,
it can be seen that for p >0 the growing regime departs from
the EM become clearly unstable. Therefore, we conclude that
the UEM dominates even in the asymptotic behavior.

Figure 2 shows plots of W versus ¢ obtained using lattices
of different size but keeping p=0.32 constant. Three differ-
ent regimes and the corresponding crossovers can be ob-
served. For short times—say, t<<tr,,—the growth proceeds
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FIG. 2. Log-log plots of the interface width (W) versus time (z)
for the EM-UEM model. Data obtained keeping p=0.32 constant
and using lattices of different size, which are, from bottom to top,
L=64, 128, 256, 512, and 1024. The arrows show the location of 7,
and 7, for the data corresponding to L=1024. Also, the dashed lines
have slopes Bygm=2/3 and Brp=1/2, and have been drawn for the
sake of comparison. More details in the text.

essentially at random, so it follows that W(t) oc tPro, 1<ty
where 8=1/2 is the growing exponent of the RD model.
During an intermediate-time regime—say, f,; <t<t,,—the
UEM process starts to dominate and finally, for t>1,,, cor-
relations can no longer develop due to the geometrical con-
straint of the lattice size, and therefore the saturation of the
interface width is observed.

In order to outline a phenomenological dynamic scaling
approach and based on Egs. (4) and (5), we propose the
following ansatz for the saturation value of the interface
width W,(L.p),

Wea(L,p) & LBMp™°  (p >0), 9)
and the crossover time t,,,

to(L,p) o L'UEMp™  (p > 0), (10)

where &8 and y are exponents. It is worth mentioning that
only the exponent of the UEM, but not those of the EM,
enter into Egs. (9) and (10). So the confirmation of the pro-
posed scaling ansatz will be clear evidence that the growth
mechanism of the UEM is dominant, while the growth
mechanism of the EM becomes irrelevant.

Figure 3 shows log-log plots of W, /L*VEM versus p ob-
tained for L=128, 256, 512, and 1024. A systematic ap-
proach of the data to a straight line behavior is observed
when the lattice size is increased, in agreement with Eq. (9).
The best fit of the data corresponding to L=1024 gives the
slope 6=-0.48+0.03. The systematic deviation of the data
for low values of p may be due to the partial stabilization of
the interface caused by the stable growth mode of the EM,
which is expected to become important in the p— 0 limit and
for small lattices.

Figure 4 shows log-log plots of t,,/L*VEM versus p ob-
tained using lattices of size L=128, 256, 512, and 1024.
Again, a rather small systematic deviation of the data for low
values of p can be seen, but this deviation becomes negli-
gible when the size of the samples is increased. This effect is
in agreement with the fact that the EM growing regime be-

PHYSICAL REVIEW E 72, 036116 (2005)

T
> L=128 red
0.2+ = =256 i
- o L=312 P
« L=1024]
El N
i #
E . 3
=
0.04r 7 1
v L P | R L
107 107 10°
p

FIG. 3. Log-log plots of W, /L“UEM versus p obtained for lat-
tices of different size, as indicated in the figure. The best fit of the
data, according to Eq. (9), has slope §=—0.48 and corresponds to
the dashed line.

comes irrelevant even for small p when the lattices are large
enough. The best collapse is found using zygpy=1.05, in
agreement with our previous estimation and the fact that
Zuem # @uem/ Bugewm as expected when the Family-Vicsek an-
satz [Eq. (3)] is no longer valid. The observed straight line is
in agreement with Eq. (10), and the best fit of the data gives
the slope y=0.47+0.04.

These results lead us to conjecture the following exact
(rational) values for the new exponents of the EM and UEM:

1)

1 1
- 5(— 0.48+0.03), y= 5(0.47 +0.04), (11)

where the values between brackets are our numerical estima-
tions.

Table I summarizes the values of the exponents 6 and y
obtained for competitive growth models. It follows that for
the competition between mechanisms leading to stable inter-
faces one has >0, in agreement with the fact that the
rougher interface of the RD model becomes smoother when
p is increased, due to the increasing influence of either the
BD or the RDSR growth mechanisms. However, in the case
of the EM and UEM one has <0 because the smoother
interface of the EM with roughness of the order of W,
o« L*M (apy=1/2) is further roughened by the operation of

3.0F ‘ s
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e =512
" L=1024
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T Lof 3 B
- T
..
-
0.333F A
5 0
10 10 10

FIG. 4. Log-log plots of ¢,/ L*UEM versus p obtained for lattices
of different size, as indicated in the figure and taking zygy=1.05.
The dashed line has slope y=0.47 and corresponds to the best fit of
the data according to Eq. (10). More details are given in the text.
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TABLE I. Scaling exponents ¢ and y determined for different
competitive growth processes. RD=random deposition, RDSR
=random deposition with surface relaxation, BD = ballistic deposi-
tion, EM=Eden model, UEM=unstable Eden model, and PW
=present work. More details are given in the text.

Model ) y Reference
RD-RDSR 1 2 [20]

RD-BD 1/2 1 [20]
EM-UEM -1/2 1/2 PW

the UEM mechanism with W, o L*UEM (aypy=1) when p is
increased, as shown in Fig. 1.

It is also worth mentioning that the crossover time of the
EM (p=0) and the UEM (p=1) behaves according to f,,
o LM (zpv=3/2) and £, % LM (zpv=1), respectively. So
one has that for the EM and UEM 1, decreases when p is
increased, as is also shown in Fig. 1 and in agreement with
the exponent y=1/2 reported in Table 1.

IV. CONCLUSIONS

In the present work a competitive dynamic process in-
volving two different growing mechanisms having different
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lateral correlations—namely, the EM and UEM—has been
studied numerically. In this discrete model, particles are ag-
gregated according to the rules of the EM with probability
(1-p) and according to the rules of the UEM with probabil-
ity (p). We have found that the saturation width W, and the
crossover time f,, depend on both the lattice size L and the
probability p. New scale behaviors are proposed and the cor-
responding exponents are numerically determined, according
to Egs. (9)—(11). It is found that the unstable growth mecha-
nism dominates the dynamics of the system. This finding
may simply be a particular characteristic of the selected com-
peting mechanisms or it may reflect a deeper physical behav-
ior. This open question is relevant for the search of suitable
stabilization mechanisms for highly disordered surfaces.

We expect that this numerical calculations may stimulate
further work, both experimental and theoretical, since com-
petitive processes appear in many physical, chemical, and
biological systems.
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